High-Density SNP Genotyping of Tomato (Solanum lycopersicum L.) Reveals Patterns of Genetic Variation Due to Breeding

نویسندگان

  • Sung-Chur Sim
  • Allen Van Deynze
  • Kevin Stoffel
  • David S. Douches
  • Daniel Zarka
  • Martin W. Ganal
  • Roger T. Chetelat
  • Samuel F. Hutton
  • John W. Scott
  • Randolph G. Gardner
  • Dilip R. Panthee
  • Martha Mutschler
  • James R. Myers
  • David M. Francis
چکیده

The effects of selection on genome variation were investigated and visualized in tomato using a high-density single nucleotide polymorphism (SNP) array. 7,720 SNPs were genotyped on a collection of 426 tomato accessions (410 inbreds and 16 hybrids) and over 97% of the markers were polymorphic in the entire collection. Principal component analysis (PCA) and pairwise estimates of F(st) supported that the inbred accessions represented seven sub-populations including processing, large-fruited fresh market, large-fruited vintage, cultivated cherry, landrace, wild cherry, and S. pimpinellifolium. Further divisions were found within both the contemporary processing and fresh market sub-populations. These sub-populations showed higher levels of genetic diversity relative to the vintage sub-population. The array provided a large number of polymorphic SNP markers across each sub-population, ranging from 3,159 in the vintage accessions to 6,234 in the cultivated cherry accessions. Visualization of minor allele frequency revealed regions of the genome that distinguished three representative sub-populations of cultivated tomato (processing, fresh market, and vintage), particularly on chromosomes 2, 4, 5, 6, and 11. The PCA loadings and F(st) outlier analysis between these three sub-populations identified a large number of candidate loci under positive selection on chromosomes 4, 5, and 11. The extent of linkage disequilibrium (LD) was examined within each chromosome for these sub-populations. LD decay varied between chromosomes and sub-populations, with large differences reflective of breeding history. For example, on chromosome 11, decay occurred over 0.8 cM for processing accessions and over 19.7 cM for fresh market accessions. The observed SNP variation and LD decay suggest that different patterns of genetic variation in cultivated tomato are due to introgression from wild species and selection for market specialization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SNP Discovery and Linkage Map Construction in Cultivated Tomato

Few intraspecific genetic linkage maps have been reported for cultivated tomato, mainly because genetic diversity within Solanum lycopersicum is much less than that between tomato species. Single nucleotide polymorphisms (SNPs), the most abundant source of genomic variation, are the most promising source of polymorphisms for the construction of linkage maps for closely related intraspecific lin...

متن کامل

Genetic Diversity and Population Structure of Two Tomato Species from the Galapagos Islands

Endemic flora of the Galapagos Islands has adapted to thrive in harsh environmental conditions. The wild tomato species from the Galapagos Islands, Solanum cheesmaniae and S. galapagense, are tolerant to various stresses, and can be crossed with cultivated tomato. However, information about genetic diversity and relationships within and between populations is necessary to use these resources ef...

متن کامل

Variation Revealed by SNP Genotyping and Morphology Provides Insight into the Origin of the Tomato

Tomato, Solanum lycopersicum, is divided into two widely distributed varieties: the cultivated S. lycopersicum var. lycopersicum, and the weedy S. lycopersicum var. cerasiforme. Solanum pimpinellifolium is the most closely related wild species of tomato.The roles of S. pimpinellifolium and S. l. cerasiforme during the domestication of tomato are still under debate. Some authors consider S. l. c...

متن کامل

Development of a Large SNP Genotyping Array and Generation of High-Density Genetic Maps in Tomato

The concurrent development of high-throughput genotyping platforms and next generation sequencing (NGS) has increased the number and density of genetic markers, the efficiency of constructing detailed linkage maps, and our ability to overlay recombination and physical maps of the genome. We developed an array for tomato with 8,784 Single Nucleotide Polymorphisms (SNPs) mainly discovered based o...

متن کامل

Estimation of Gene Action and Genetic Parameters for Morphological Traits in F1, F2 and F3 Generations of Tomato (Lycopersicum esculantum L.)

Tomato is the second most important vegetables, after potato, which has the highest area of cultivation worldwide. Acording to FAO statistics, Iran is the sixth producer of tomato cultivation in the world. However, more than 95 percent of vegetable seeds are imported into the country. The present study was conducted in order to evaluate commercial imported hybrids (8320, Eden, Matin and Xaman) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012